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Abstract. Formulae are derived for the average value a n d  for the dispersion of the spectrum 
of an  electronic Hamiltonian in a finite-dimensional, antisymmetric and  spin-adapted space. 
Both the moments are expressed in terms of the corresponding two-electron quantities. 
The derivation is based on the theory of spin-adapted reduced Hamiltonians. 

1. Introduction 

The problem of distribution of eigenvalues of a Hamiltonian is almost as old as 
quantum mechanics. The early works by Bethe (1936) and by van Lier and Uhlenbeck 
( 1937) were directed towards understanding some general regularities in the structure 
of N-particle system spectra. Further development of the theory was mainly concerned 
with applications in nuclear physics. However, many interesting results, valid for any 
N-particle system, were obtained. An excellent review containing an extensive list of 
references was recently published by Brody ef a1 (1981). Any reader interested in the 
wide background of the subject should refer to this review. 

An interest in an implementation of the statistical approach in the theory of 
N-electron systems, particularly in the theory of atomic spectra, inspired, at least 
partly, most of the early works in this field. However, a study on the transition atom 
spectra by Rosenzweig and Porter (1960) was, to our knowledge, the first work in 
which some specific features of spectra of many-electron systems were systematically 
described and explained in terms of their statistical properties. During the following 
decade, work on this subject became rather scarce. One should mention here contribu- 
tions by Moszkowski (1962) and Layzer (1963). More recently, important empirical 
studies were carried out by Parikh (1978) and by Cowan (1981). The latter two authors 
have demonstrated that the density distribution of energy levels arising from a given 
atomic configuration is nearly Gaussian. In  a most interesting series of papers by 
Bauche-Arnoult et a1 (1979, 1982, 19851, formulae for the first two moments of the 
energy distributions of the levels of an atomic configuration and of the radiative 
transitions between the levels of two configurations were derived and implemented to 
interpret several atomic spectra. Excellent agreement between the theoretical and 
experimental results emphasises the usefulness and importance of this kind of study. 
Some empirical analyses performed by the present authors (Bancewicz and  Karwowski 
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1984, 1986) indicate that, within a given atomic configuration, subsets of the energy 
levels belonging to the same symmetry species ( to  the same angular momentum) exhibit 
specific statistical properties. I n  particular, a hypothesis that the density distribution 
of all energy levels belonging to a given configuration is Gaussian was rejected by the 
x 2  test, while the same hypothesis, when applied to subsets of fixed angular momentum 
energy levels, was accepted. Therefore an  evaluation of statistical moments of the 
energy level density distributions for a fixed symmetry is a task of some practical 
interest. Its importance was emphasised by French et a1 (French 1974, Mon and French 
1975, French and Kota 1982). In nuclear physics some interesting results were obtained 
by Nomura (1974,1985,1986) but for the case of many-electron systems the correspond- 
ing formulae have never been published. 

In this paper we derive the formulae for the average value and  for the dispersion 
of the spectrum of the electronic Hamiltonian in a finite-dimensional antisymmetric 
and spin-adapted space. The results may easily be translated to the language of atomic 
physics. However they are, in fact, much more general and may be applied to any 
N-electron system. Both the moments are expressed in terms of the corresponding 
two-electron quantities. Therefore the expressions are useful in studying the general 
behaviour of N-electron spectra in terms of the number of particles and of the total 
spin quantum number. The derivation is based on the theory of spin-adapted reduced 
Hamiltonians recently developed by Valdemoro (1985) and, in particular, on the results 
of a recent paper by Karwowski et a1 (1986). The paper is organised as follows. In 
P 2 some relevant definitions and theorems of the spin-adapted reduced Hamiltonian 
formalism are collected. Then, in 9 3, expressions for the average of a Hamiltonian 
spectrum in an N-electron spin-adapted space are derived. Finally, the last section is 
concerned with the dispersion of the spectrum. Recurrent formulae allowing us to 
evaluate all the traces of the occupation number operators met in expressions for the 
spectral moments are derived in an appendix. 

2. Formulation of the problem 

We assume the electronic Hamiltonian H to be determined in an  antisymmetric and  
spin-adapted subspace ZA( N, K, S, M )  of a finite-dimensional Hilbert space. The 
subspace RA( N, K ,  S, M )  is defined as the antisymmetric and spin-adapted part of 
the N-fold tensorial product of a one-electron space 

XA(N, K,S ,  M ) = ( V S $ ) : v  (1)  
where the superscript A stands for antisymmetric and S, M refer to the eigenvalues 
of the total spin operators. The one-electron space V2& is spanned by a set of 2 K  
spin orbitals and is a product of the K-dimensional orbital space 

spanned by a set of K orthonormal orbitals dL and of the two-dimensional spin space. 
The dimension D ( S ,  N, K )  of 2 f A (  N, K ,  S, M )  is given by the Weyl-Paldus formula 
(Paldus 1974) 

VOK = r h } : = l  ( 2 )  

2 S + 1 (  K + l  )( K + l  ) 
D ( S ,  N ,  K ) = -  

K + l  N / 2 - S  N / 2 i - S i - 1  ' 

It is convenient to denote 

(3)  

D( i )=D(S,  N - Z i ,  K - i )  i=O,  1, 2 , .  . , (4) 
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and D = D(0) .  We use symbols Tr and tr to denote, respectively, traces of operators 
in ZA( N,  K ,  S, M )  and in V i ,  i.e. 

and 

where 

are oneltwo-electron integrals, 
v 

h = l  

are replacement operators (Paldus 1976, Duch and Karwowski 1985) and h , (  I ) ,  h2(1,2) 
describe, respectively, one- and two-electron interactions. Defining 

(10) h ( l ,  2) = ( h , ( l ) + h , ( 2 ) ) i ( N -  l ) + h 2 ( 1 ,  2) 

we can rewrite equation ( 7 )  in a more compact form as 

where 

{ i j l  k l l  = (4, ( 1) #)!, (2) I h ( 132) 141 ( 2 )  d/( 1)). (12) 

Operators E,,, referred to as the orbital occupation number operators, are par- 

E,,l.i) = ntI.1) (13) 

where 1.1) is a basis vector in X A  and n: =0,  1, 2 is the occupation number of C#J? in 
1'1). A matrix representation of the Hamiltonian (11) in RA( N ,  K ,  S,  M )  is 

ticularly important in our further applications. One can easily see that 

where 

~ , l : i /  = (.I~E,,& - 6,hE,,ini (15) 

is the ik,jl element of the reduced second-order transition ( i f  .1#II) or density (if  
.2 = n)  matrix. The basis vectors l.l), in) are spin-adapted antisymmetrised products 
of the orthogonal orbitals spanning the one-electron space V i .  Explicit formulae for 
D,:!:, are given by Duch and Karwowski (1985). 
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The spin-adapted reduced Hamiltonian is determined in a two-electron space. Its 
matrix representation is (Valdemoro 1985, Karwowski er a1 1986) 

D 

Hh,.YT = f  c H,I,D;$ . (16) 

The matrix may be factorised by splitting the two-electron orbital space onto the one 
corresponding to the symmetric (singlet-coupled) and antisymmetric (triplet-coupled) 
pairs. The corresponding matrices are denoted H' and H -  respectively. They are 
related to H '  

\ I 1  

H;r,q, = H;'.q, =k Hb'.', i f p # r  and q # s  

= fiHbP.,' i f q # s  (17) 

HpTp.Y, = Hb/7.q, 

and may be expressed in a simple way in terms of the two-electron integrals (12) 
(Karwowski er a1 1986) 

H;r,qT = C ( p r ,  qs)(Q;{pqlrs>*+ QT{f?lOO}L+ Q ~ { f o l o 3 = + 6 ~ r . q , R z )  (18) 
where 

being, respectively, matrix elements of the 'Coulomb' and 'exchange' operators defined 
over the entire one-electron space. The constants 07, i = 1, 2, 3, and  T:, j = 1, 2 ,  may 
be expressed in terms of traces of products of at most four different orbital occupation 
numbers: 
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The traces, in turn, are rational functions of N, S and K. For explicit expressions see 
the appendix. 

The first two moments of the Hamiltonian spectrum in ZA(N,  K ,  S, M ) ,  i.e. the 
average energy $?( N, S) and the width or the dispersion of the spectrum 07( N, S) are 
defined as 

g ( N ,  S ) = T r  H ( N ,  S ) / D  

and 

IT'( N, S) = Tr H( N, S ) * / D  - %( N, S ) 2  

where H ( N ,  S )  is the Hamiltonian matrix with elements given -y (14). Both the 
moments may be, in principle, evaluated using explicit expressions for H,,, . However 
it is much simpler to derive them from H'. Indeed, from (13), (15) and ( 16) we have 

K c H b r , p r = t c  Hz,(12/N(N-1)11~)=5N(N-1) Tr H ( N ,  S) (24) 
P. r z 

where we used the identity 

K C n:=N.  
p = 1  

In the case of the second moment the relation to H' is even more straightforward 
since, according to (14) and (16), 

3. The average energy 

According to (17), (22) and (24) 

Substituting (18)-(21) and making use of the expressions for traces of products of the 
orbital occupation number operators derived in the appendix, after very simple but 
rather tedious algebra, we finally arrive at a compact and elegant formula 

(27) e ( N,  s ) = a ( N, s ) %( 2,O) + a - ( N, s ) $?( 2 , l )  jV 

where 

a *( N, S) = $ [ E  ' i N ( f N  f 1 ) S(S + 1 ) ]  & + = l  ~ - = 3  (28) 

and 

s = ( - l ) i  s =o,  1. 
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Let us note that the one-electron contribution to (29)  depends on N since, according 
to (10) and  (12), 

(30) 

(31 )  

where E, (  N, S) and E2( N, S )  are, respectively, the one- and two-electron parts of the 
average energy. It is easy to see that 

E , ( N ,  S )  = NE,( l )  (32) 

I P41 rs)  = ( P4 I rs 1 + [ 6,y ( rl s) + 6, ( PI 4 1 I /  ( N - 1 ). 

8 ( N ,  S )  = E , ( N ,  S ) +  E2(N,  S )  

If the one-electron part is explicitly separated then 

and  

E , ( N ,  S )  = a + ( N ,  s ) E , ( ~ ,  O ) + a - ( N ,  s )E2(2 ,  1 )  (33) 

where 

l K  
G ( 1 )  = G ( l , 9  =z c (PIP) 

p = l  

is the average one-electron energy and 

(34) 

are the average two-electron energies of the singlet- and triplet-coupled systems of two 
electrons. 

It is convenient to define Coulomb and exchange operators averaged over the 
one-electron space. Their matrix elements are, respectively, given by 

We assume that the one-electron basis functions are chosen so that 
finite when K + W. The two-electron average energy may now be expressed as 

and ?LAq remain 

E 2 ( 2 ,  s ) = t r ( % ’ + 6 X ’ ) / ( K  $ 6 ) .  (37 )  
Let us denote 

Then, from ( 3 1 ) ,  (32) and (37) h e  obtain 

e ( 2 , O )  - Z?( 2 ,  1 1 = E?( 2 ,O)  - E,( 2, 1 ) = 2 ( s 0  - jy + KRY )/ ( K + 1 )  (39) 
and, since bo > j ,  > 2, > 0, we have 

4 ( 2 , 0 )  > @ ( 2 ,  1). (40) 

e ( 2 , O )  - 8(2 ,  1 )  = 2 g y .  (41) 

For large orbital spaces ( K  + x), 
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Let us note that differences between average energies of systems with a fixed number 
of electrons but with different S values d o  not depend on N. In particular, 

% ( N ,  S? - U (  N, S +  1) = (S+ l)(E2(2,0)  - El(2, 1 ) )  (42) 

which implies (equation (40)) that U (  N, S) > k?( N, S +  1). Similarly 

k?(N +2,  S ) -  g ( N ,  S) = 2 E , ( l ) + ( f N +  l)E2(2,0)+5NE2(2,1) (43) 

i.e. the difference is S-independent and linear in N. 
The average energy of an N-electron system, regardless of its spin, is equal to 

S 
$? ( N )  = (2 S + 1 ) D ( S, N,  K ) %( N, S )  (2 S + 1 ) D( S, N, K ) (44) 

Making use of (3), (27), (31) and (37) we get the well known formula 

with 

E2(2) = tr(22'-YL')/(2K - 1). 

4. The dispersion 

A substitution of (17)-(20) into (25) gives 

Tr H (  N, S)' = Q: tr H ( 2 , 0 ) *  + Q ;  tr H(2 ,  1)? + Q l  t r ( 2  + X ) ?  + Q; t r ( 2  - YL)? 

+2(  Q: - Q;) tr X 2 t f ( R + +  R - )  tr 2 +$(I?'- R - )  tr X (47) 

where 

Now, using (23), (27) and (30) we get 

a2( N, S) = AIa'(2,O)"' + Aia ' (2 ,  1)" 

+ B ' c ~ ' ( ~ + X ) '  + B - u 2 ( 2 - X ) '  + CT~' (Xt ) ' '  (49 1 
where the superscript N means that all one-electron integrals are multiplied by a factor 
1 / (  N - 1) (according to (30)), 

A,' = Q ; K ( K  * 1 ) / 2 D  

B ' = Q ; K / D  (50)  
C' = 2 (  Q ;  - Q r )  K /  D 

and 

a2(a$+b3L)= tr(a9-t bX)'/K - [ t r ( aB+  bX)lK]'.  
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Separating in (49) the dispersion of the one-electron Hamiltonian, a : ( h , ) ,  and the 
covariance between the one- and two-electron parts of the Hamiltonian, ulZ( h ,  , h7) ,  
from the dispersion of the two-electron Hamiltonian at( h 2 ) ,  we have 

a2( N,  S) = A , a f (  1) + A;a:(2,0) + A r a i ( 2 ,  1) 

+ K’B’af(9’ + YC’) + K E -c;($‘ - X‘) + K Z  C -CT;( X’) 
+ G f ~ , Z [ h l ( 2 2 ’ -  X’)]+ G-a,’[hl($’- Y r ) ]  (52) 

where 

A, = K [ ( K  +2)Q;+ ( K  -2)Ql+ ( K  +2)’QQr + ( K  - 2 ) 2 Q 2 + 8 ( Q ;  - Q ; ) ] / D (  N - 1)’ 

G+  = 4K2( Q:+ KQl+2Q:)/D( N - 1) ( 5 3 )  

G -  = 2K2[3Q; - Ql+ ( K  -2) (3Qr-  0;) +8(Q;- Q:)] /D(  N - 1) 

and 

1 K  
d ( 2 ,  s)  = 3 

(+:(a$’+ bYC’) =- t r (aB’+ bX’)’-[tr(a$’+ b X ‘ ) / K ] z  

[ ( p q /  rs) + 6(  psI rq)]I/ K ( K  + 6 )  - E2(2, s)? 
P4’C 

1 
K 

(54) 

1 K  
uIZ[ h ,  ( a2’ + bYCC’)] = - 1 ( p 1 q ) ( a$& + bY&) - E ,  ( 1 ) tr( a$’ + bX’)/  K. 

K P . 4  

Equation ( 5 2 )  allows us to study the width of the spectrum as a function of N, S and 
K. The dispersions at the right-hand side of the equation characterise one- and 
two-electron systems described in the same orbital space as the N-electron system. 
Information which depends on the number of particles and on the total spin is 
transferred by A , ,  AS, E * ,  C’ and G’ coefficients. Since 

and 

Q : / D  = W(4):+ W(2):D(l)/D(O)+ w(O):D(2)lD(O) (56) 

where W(k)r  is a polynomial in N of the kth degree (consult the appendix for explicit 
expressions), the coefficients in (52)  are the polynomials of a degree not higher than 
fourth in N and not higher than second in S ( S  + 1). The corresponding formulae may 
be derived combining (21), ( 5 0 ) ,  ( 5 3 ) ,  (A8) and (A12). After some rather tedious 
algebra we get 

A ,  = 2 K [ f N ( K  - ; N ) ( K  +2) /K  -S (S+  l ) ] / ( K  + 1 ) ( K  - 1 )  

AI = a’( N ,  S ) [ ( K  - f N ) ( K  - f N  + 1 )  - S ( S  + 1)3/ K ( K  - 1) 
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B + = 2 a t (  N, S ) [ (  K - i N ) ( $ N -  1)(2K - 1) - S ( S +  1)] / (  K + 1 ) K (  K - 1 I (  K -2)  

C' = - 2 ~ ' (  N, S)[6( K - i N ) ( i N  - 1) - S(  S + 1 )]/ ( K + 1 ) (  K - 1 ) (  K - 2) 

A , = { i N ( K  - f N ) [ N ( K  - i N ) F ( l ,  1 , 3 ) - ( K  + l ) F ( l , 4 , - 6 ) ]  
(57)  

- S ( S + 1 ) [ 2 N ( K  - $ N ) F ( 1 , 3 , - 3 ) - K F ( 5 ,  - 1 ,  -611 

+ 2 [ S ( S +  l ) ] 'F ( l ,  -3,3) - K ( K  - l)A;}/ K ( K  + 1) 

B - = { N ( K  - ;N)($N-l)[NF(O,  2, -1)-2F(O, 1 ,7 ) ]  

- 2 S ( S +  1) [N2F(0 ,  1 ,2)  -2NF(O, 4 , 3 ) +  12F(O, 1, O ) ]  

- [ S (  S + l)] 'F( 0, 0,4)}/ ( K + 1 ) (  K - 1) - B+ 

G+ = 8 ~ ' (  N, S ) K (  K - i N ) / (  K + 1 t (  K - 1) 

G - =  -2K(  K - N ) [ 4 d ( N ,  S ) (2K - l ) / ( K  + 1 ) -  N ( N -  1)]/( K -1) (  K -2)  

where 

F (  p ,  q, r )  = ( pK ' + qK + r ) /  ( K - 2 )  ( K - 3). ( 5 8 )  

Behaviour of the dispersion in a limit of very large orbital spaces is of a particular 
interest. Let us assume that K >> S and K >> N so that S / K  = O ,  N / K  = O  and 
F (  p ,  q, r )  = p .  Then 

A , =  N A;=a'  K'B' = 2 (  N -2)a' 
(59 )  

K 2 C ' = - 6 ( N - 2 ) a '  G' = 8a' G - = 4 ( i - 3 ~ ' )  

and 

a'( N,  S) = Nu;( 1 ) + a ( N ,  S){ a:( 2,O) + 2( N - 2)[ a:($' + X') - 3 X')] 

+4a,,[h,($'+ ?[')]}+ a - (N ,  S){a:(2,1) + 2 ( ~  - 2 ) a i ( ~ ' -  x') 
+ 4a,2[h,(9 '-  X')]}. (601 

A close similarity between this equation and (27), or rather (31)-(331, for the average 
energies becomes complete when a'(9') = a'(X') = 0, as it is, for example, in the case 
of an  atomic configuration of equivalent electrons. Indeed, both the operators 9' and 
5Y are spherically symmetric if the sums in (36) run over all orbtials of the configuration 
and both %b, and X;, are then scalar matrices; hence, dispersions of spectra of these 
matrices vanish. From (60) we can see that while cr'( N + 2, S) is, for K >> N,  always 
greater than a'( N,  S), the relation between a'( N ,  S) and a'( N,  S + 1) depends upon 
relations between different dispersions on the right-hand side of (60). 

Now we consider a case when both K >> 1 and N >> 1, so that S /  K = 0 and S I N  = 0. 
From (52) and (57) we get 

r ' ( N ,  S ) 1 - N ( l - N / 2 K ) ( g N ( l - N / 2 K ) [ ~ : ( 2 , 0 ) + 3 ~ ~ ( 2 ,  l ) ]  

+ a;[ h ,  + N (  2 9 '  - X')/2]} (61 1 
i.e. the width of the spectrum is spin-independent and reaches its maximum for N = K. 

One of the most interesting properties of N-electron spectra is their behaviour with 
respect to a mutual replacement of the particles and holes?. As a result of the 

f A related subject is also discussed in  a recent paper  of Nomura ( 1 9 8 5 )  
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particle-hole symmetry in atoms, spectra of two complementary atomic configurations 
are the same. Obviously, a necessary condition for a spectrum to be invariant with 
respect to the particle-hole exchange is that 

(62) 
The invariance properties of Q ,  may easily be studied by replacing the operators ELL 
in (21) by 2 - ELL. Then one finds that 

Q ; ( N , S ) = Q ; ( 2 K  - N , S )  (63 1 

u 2 ( N ,  S ) = u 2 ( 2 K  - N ,  S). 

but 
Qr ( N, S )  = QI (2  K - N, S ) - 4 Y ,  ( N,  S )  + Y2 ( N, S ) - Y ,  ( N ,  S ) 
QY(N,  S )  = Q,(2K - N, S )  - ? Y , ( N ,  S ) + ? Y 2 ( N ,  S )  

+ Y, (  N, si + 4 x 3  N ,  S.) - 4x ; ( N ,  S )  
(64) 

Q;( N, S )  = Q; (2  K - N, S )  + Y,(  N, S )  - Y?( N,  s 1 - X i (  N, S )  + x I ( N, S )  
where the symbols Y, and X :  are defined in  the appendix (in ( A l ) ,  (A2),  (A9) and 
(A10)) and, for simplicity, the argument K has been left out. The only combination 
of Q:, Q; and Q; which is invariant is 4Q; + Q: + Q; and, as one can easily check, 
relations between 9 and X which would lead to (62) due to the invariance of this 
combination can never be fulfilled. Therefore the necessary condition for a spectrum 
to be invariant with respect to the particle-hole replacement (equation (62)) is that 
~'(2) = a'(X) = 0, as it is in the case of configurations of equivalent electrons in atoms. 

As was already mentioned in the introduction, the theory developed in  this paper 
may be useful in studying statistical properties of spectra. The simplest global charac- 
teristic of a spectrum is given by its first two moments. In  many cases this kind of 
characteristic is entirely sufficient (see, for example, results of an analysis of atomic 
spectra by Bauche-Arnoult et a1 1979, 1982, 1985). The general formulae derived in 
this paper may be easily applied in theory of atoms-then the two-electron integrals 
( p q l r s )  have to be replaced by combinations of radial integrals multiplied by products 
of appropriate 3- j  coefficients. The formulae may also be used to study general 
properties of spectra of N-electron systems as functions of N and S and to determine 
their shapes. An extension of the formalism to higher moments seems to be particularly 
attractive. Since a set of all moments determines the spectrum in a complete way, it 
may be an  alternative way of describing an N-electron system in terms of the two- 
electron ones. Another application of this formalism-checking the correctness of 
computer programs-was recently proposed by Diercksen and Karwowski ( 1987). 
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Appendix. Traces of products of the orbital occupation number operators 
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where subscripts S N K  mean that the trace is taken in  X A (  N ,  K,  S, M ) .  We have the 
following identities: 

(A31 
('44) 
(A51 

Eli = 1 + E,l(EII - 1 ) / 2 -  (El l  - 1 ) ( E , l - 2 ) / 2  
Tr(E l l (E l1  - l ) F 1 ) s s K  = 2 T ~ ( F ' ) S . N - ~ , K - ~  
T r ( i E l l  - 1HEtI - ~ ) F ' ) s N K  = 2  Tr(F1)s , ,%r ,~ - l  

where F'  stands for an  arbitrary function of the orbital occupation number operators 
not containing E l l .  Substituting ( A 3 )  into ( A l )  and using ( A 4 )  and (AS) we obtain 
Y,(S,  N ,  K ) =  Yr- l (S ,  N ,  K ) +  Y,- ,(S,  N - 2 ,  K - 1 ) -  Yr-l(S,  N ,  K - 1 ) .  (A61 
Equations ( A 6 )  and (A2) combined with the dimension formula ( 3 )  determine in a 
recurrent way traces of products of the orbital occupation number operators. In 
particular, since 

D(S ,  N, K - l ) = D ( l ) + ( l - N / K ) D ( O )  
we have 

Y l ( S ,  N ,  K ) = -  D ( 0 )  
N 
K 

D ( 1 )  D(0 )  -- N ( N - 1 )  2 
K ( K - 1 )  K - 1  

N (  N -  1 ) ( N  - 2 )  

YAS,  N ,  K )  = 

D ( 1 )  
6( N - 2 )  

Y,(S, N, K )  = K ( K  - 1 ) ( K  - 2 )  D ' 0 ) - ( K - 1 ) ( K - 2 )  

D(1) 
N ( N  - 1 ) ( N  - 2 ) (  N - 3 )  1 2 ( N - 2 ) (  - 3 )  

Y,(S, N ,  K ) =  K ( K - l ) ( K - 2 ) ( K - 3 )  D ( o ) - (  K - 1 ) ( K  - 2 ) ( K  - 3 )  
12 

( K  - 2 ) ( K  - 3 )  
+ D ( 2 ) .  

A similar procedure may be applied to calculation of the traces of products 
containing squares of the occupation number operators. Let 

and 
X'; '(S,  N ,  K ) =  Y,(S,  N ,  K )  

X 9 (  S, N ,  K ) = Tr( E I E $ . . .E i, Eq+ ,,,+ I Eq+2,y+2 . . . Err ) .  

E:,  = El, + El,(El I - 1 )  

Xg(S .  N ,  K ) = X ; - ' ( S ,  N,  K ) + 2 X : ' I ; ( S ,  N - 2 , K  - 1 ) .  

(A91 

(A101 
Using (A4) together with the identity 

we obtain 

( A l l )  
In  particular, 

X f ( S ,  N ,  K ) =  Yl(S, N, K ) + 2 D ( 1 )  
N - 2  
K - 1  

N - 2  
K - 1  

X i ( &  N, K ) =  Y , (S ,  N, K ) + 2 -  D ( 1 )  

(A121 
X i ( S ,  N, K ) = X ; ( S ,  N, K ) + 2 -  D( 1 )  + 4 D ( 2 )  

( N  -2) (  N - 3 )  
( K - l ) ( K  - 2 )  K - 2  

4 
D(1)- -  D(2 ) .  N ,  K ) =  Y3,CS, N, K ) + 2  
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All the traces which are needed for evaluation of the first two moments of the 
Hamiltonian spectrum are listed in (AS) and (A12). Traces which would appear in 
expressions for higher moments may easily be derived from (A6) and ( A l l )  and from 
the identity 

( ~ 1 I 4 , ( ~ , , - 1 ) ( ~ l 1 - 2 ) 1 . ~ ) = 0  (A13) 

being fulfilled for an arbitrary 1’1). The last identity allows us to reduce any power of 
an  orbital occupation number operator in a trace expression to a linear combination 
of the first and second powers only. 
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